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Starting from the grand partition function, the symmetry breaking of a BE gas 
in 2 + 1 dimension is investigated both analytically and numerically. For this the 
Gaussian effective potential method is extended to Iz (chemical potential)- 
dependent O(N) finite-temperature symmetric ~D 4 theory. The relevant integrals 
involved are evaluated in a simple and straightforward manner. The results are 
compared with those of others obtained by the loop expansion method. 

1. I N T R O D U C T I O N  

In recent years quantum field theory in dimensions other than 3 +  1 
has become a focus of  widespread research interest not only for academic 
and mathematical  reasons, but because it is conjectured that these theories 
are capable of  experimental  predictions. In particular, three-dimensional 
dynamics is relevant for condensed matter  (Belvedre, 1990; Dorey and 
Mavromatos ,  1991; Schonfeld, 1981; Jackiw and Templeton,  1981). 
Campbel l  and Bishop (1982) discussed in detail the application of  9 4 theory 
in two space-time dimensions [in the case of  dimerized polyacetylene 
(CH)x].  Also, in 2 + 1  dimensions the problem of  precariousness can be 
avoided. 

In this paper  we make a Gaussian effective potential  analysis 
(Stevenson, 1984, 1985, 1987; Stevenson et al., 1986; Alles and Tarrach, 
1986a, b; Stevenson and Roditi, 1986; Roditi, 1986a,b; Tarrach, 1986; Roy 
et al., 1986a, b; Haber  and Weldon, 1981, 1982) for a finite-temperature, 
/~-dependent, O ( N )  symmetric A~o 4 theory and investigate the symmetry 
breaking of  a BE gas in 2 + 1  dimensions. It is argued that the G E P  
(Stevenson, 1984, 1985, 1987; Stevenson et al., 1986; Alles and Tarrach, 
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1986a, b) essentially a nonperturbative approach, has several advantages 
over the loop expansion method. In the context of O ( N )  symmetry it has 
been shown that the GEP reproduces the 1 / N  expansion result. 

We have restricted ourselves to /z-dependent ~4 theory in 2+1 
dimensions, though our results can be applied to 1 + 1 dimensions after 
redefining the 11 and I o integrals, The relevant integrals have been evaluated 
in a simple and straightforward manner. The method adopted here is quite 
different from that of Haber and Weldon (1981, 1982) based on a method 
suggested by Dolan and Jackiw (1974) and to the best of our knowledge 
has not been presented before. 

It is well known that in 1 + 1 dimensions no phase transition occurs 
and it is argued by some authors (Dolan and Jackiw, 1974, and references 
therein) that in 2 + 1 dimensions the BE phase transition occurs for massless 
bosons but does not occur for massive bosons. These arguments were based 
on the fact that at low temperature the effective potential becomes minimum 
at ~ ~ 0 only if the effective mass is equal to one of the chemical potentials. 
But in 1 + 1 and 2 + 1 dimensions the effective potential contains terms like 
/z ln(M 2_/z2) (M is the effective mass of the system and/z is the chemical 
potential) and hence the only solution for symmetry breaking is given by 
M =/z = 0. But in the GEP approach the minimum at low temperature 
occurs when the variational mass satisfies a self-consistent equation and it 
is not obvious from the equation that symmetry breaking will not occur for 
massive bosons. One has to find a numerical solution to investigate the 
symmetry breaking. 

This we have done explicitly in 2 + 1 dimensions, our starting point 
being the grand partition function Z. The GEP is essentially a nonperturba- 
tive variational method. In the present problem we have two variational 
parameters f~ and w, which make V~ a transcendental function of ~Po. Note 
that Vc gets contributions from divergent integrals such as I1(1~) and Io(1)). 
However, in 2+ 1 dimensions, as far as spontaneous symmetry breaking 
(SSB) is concerned, we did not get any nontrivial phase transition. However, 
even in 3+1 dimensions, where SSB occurs (Kapusta, 1981; Benson and 
Bernstein, 1991; Haber and Weldon, 1981, 1982), whether the critical 
temperature Tc will be qualitatively different in GEP theory from that 
obtained by others remains to be seen. As expected, our result is not different 
from that of Stevenson et aL (1987), as has been verified for /z= T = 0  
[Stevenson et al., (1987) did not consider the case /z~0]. But in 3+1 
dimensions the GEP faces the precariousness problem (Stevenson, 1984, 
1985, 1987; Stevenson et al., 1986; Alles and Tarrach, 1986a, b; Stevenson 
and Roditi, 1986; Tarrach, 1986). To avoid this, Stevenson et al. (1987; 
Stevenson and Tarrach, 1986; Majumdar and Roychoudhury, 1992) have 
proposed an autonomous theory. 
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The plan of the paper is as follows. 
In Section 2 the finite-temperature GEP including chemical potential 

for the O(N) symmetric a~ 4 theory is obtained for 2+ 1 dimensions. In 
Section 3 we discuss the behavior of  M (effective mass of the system) and 
/, with temperature. The phase transition aspects are analyzed on the basis 
of the expressions obtained and computational results. 

In Section 4 calculations of I?~ (finite-temperature GEP) are presented 
along with the behavior of IPc with q~0 for different temperatures. Also in 
this section we write the expressions for pressure and thermodynamic 
potential in terms of VG. Finally, Section 5 includes discussions and remarks. 

2. TEMPERATURE- AND p - D E P E N D E N T  GEP FOR O(N) 
SYMMETRIC ~p4 THEORY 

Before writing the Lagrangian for an interacting Bose gas with O(N) 
non-Abelian symmetry, it should be mentioned that the chemical potential 
can be introduced only to mutually commutating generators rather than to 
each group generator (Turko, 1981). So for even N, the maximum number 
of  mutually commutating charges is N/2. But in the present case we 
introduce a single chemical potential. Thus, our system is invariant only 
under 0(2)• O ( N - 2 ) ,  not under full symmetry. However, the generaliz- 
ation to more than one/~ is straightforward and will be briefly mentioned 
in Section 5. The O(N) symmetric Lagrangian for single/~ is given by 

1 v 1 2 = ~0~oj0 ~; - ~m B~O~q~j -- Au(~j~j) 2 

--  i / ' r  " 1 2 2 2 ~P2q~l) +~/* (~P, + ~2) (2.1) 

In the above and the folllowing equation, j is summed from 1 to N. The 
corresponding Hamiltonian is given by 

H 1 •  ~2. .~  ~ i 2 1 2 2 

J J J J 

+ i~ (~b ,  ~2  - ~1 ~ 2 )  - 11.~2(~D 12 "~ 2 )  ( 2 . 2 )  

For O(N) symmetric theory, where only (~o)j sets a direction, the vibrational 
solution for the angles 01, . . . ,  ON will be such that the eigendirections of 
the Gaussian wave functional are radial and transverse and because of the 
remaining O ( N - 1 )  symmetry, the N - 1  transverse quantum fields would 
have equal mass parameter, say w, and the radial field would have a different 
mass parameters, say ~ (Stevenson et al., 1987). To handle the present 
problem, we choose a coordinate system in which (q~o)j points in the j = 1 
direction; then [writing ~oj = (q)o)j + ~j and taking (~Po)l = ~o] 

•2 2 = ~o2+ 2q~o~, +y, ~oj (2.3) 
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where 

and 

~Dj : ( ~ 0 ) j  + R ~ (  0 1 ,  . . . , ON_I)~j (~ '~ j )  , = Ira01 

N 2 

N 
3 ̂  ^ A2 (2.4) 

1 

In the present case, due to existence of  a net charge, the system will not 
be invariant under  the full symmetry; rather, is invariant under  0 ( 2 ) x  
O ( N - 2 ) .  In this case, in general (Po)~ and (~o)2 are not equal to zero and 
we choose (~o)i = 0 for i = 3, 4 , . . . ,  N. However, for the sake of  simplicity 
we take (~o)2 = 0, i.e., we take (q~o)j = 0 for j = 2 , . . . ,  N. 

To compute a,w(01H[0)n,w and the finite-temperature GEP (FTGEP) 
- -FT  Va we start from basic premises and adopt  a quasiperturbative approach 

(Hajj and Stevenson, 1988) to evaluate the partition function for finite 
temperature Cand chemical potential. 

The Hamiltonian (2.2) is written as 

H =  Ho + Hi.t 

In the present case Ho and Hi,t may be written as 

Ho = n2  2 w 2 2 

+ i/x(~b~cp2- ( P 1 r  2 -',2 ,"2 - - a  (~t~ 1 -~- ~ 2 ) ]  ( 2 . 5 )  

where a = 1, 2 and a ' =  3 . . . .  , N, and 

H i n t  ~-- l r , ' ~ 2  ,~2 2 ^ 2  2 2 1 2 • 2 -~L~Z ~ a + w  ~p~,+/z ~Oo]+~mB(~o+~) 

+AB(~o+~)  4 (2.5a) 

In wiriting Hi~t, the result that (~1)= 0 has been taken into account. Now 
the grand partition function Z is given by 

Z = Tr e -€ = E (a le  - ~ "  I a)  

Again from the standard thermodynamic definition of  the Helmholtz free 
energy F = - (1 / /3 )  In Z with/3 = 1 / K T ,  one can write 

F 1 
V~ (r fl, w,/x) = V /3V In Zoq-(Hint) T (2.6) 

where Zo = Tr e -~"~ and (/"/int)T is the thermal average of Hi,t. Now, since 
the effective potential of  the system corresponds to the functiQn of q~o 
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resulting from the minimization of the free energy F under the constraint 
(~) = ~o, we have 

- F T  F T  
V~ (~o) = mina,~ V o  (~Oo, w, l~, tz)  (2.7) 

N o w  

! / - / o l H , , n 2 , . . . , , i , H 2  . . . .  > 

= I 1 V + n l w l + n 2 w 2 + "  " ' + ( N - 2 ) [ I i V + n i w ~ + n 2 w ~ + . . . ]  (2.8) 

where In1, n 2 , . . . ,  nl ,  n~ . . . .  ) represents the eigenstates of rio corresponding 
to ni and n l quanta in the ith mode and the contributions from each mode 
give rise to vacuum energies It V and ( N - 2 ) I I  V with 

f d~k Wk Gv=v  f d~k w'k (2.9) IlV=V (2~ry 2 '  (2~ry 2 

In deriving the above equations ~i has been replaced by V S d ~ k / ( 2 ~ r )  ". 

Now, as a consequence of introduction of the chemical potential, the 
frequency w~ of the ith mode will have two values wi-~ Wk = (k 2q- ~'~2) 1/2:i: 
[as can be verified by solving the coupled Klein-Gordon equation involving 
fields associated with the chemical potential arising from the Hamiltonian 
(2.2)] instead of  a single value  (k2+~'~2) t/2 as in the case of the absence of 
/z. But since no chemical potential is associated with the remaining N - 2  
transverse fields, the corresponding frequency wl for the ith mode will be 
as usual single-valued but with a different mass parameter w. Thus, for 
~-less fields w~ ~ w~ = (k2+ w2) 1/2. 

The appearance of the factor N - 2  in the second term on the rhs of 
equation (2.8) is the result of N - 2  transverse quantum fields with the same 
mass parameter w. 

Writing explicitly the trace appearing in Zo, we have 

Z o  = E ~, (H1, n2, . . . , n i ,  n ~ , .  . . , [e-~noln , n ')  (2.10) 
n l = O t o  co n~=O to ~x~ 
n 2 = 0  to  co n ~ = 0  to  co 

where In, n') stands for ]nl, n 2 , . . . ,  n; ,  n~ . . . .  ) and the summation is exten- 
ded over all modes i and for each mode the summation is over the occupation 
numbers n~ and n~. Therefore 

No = e - , ~ l l  v e - ~ n 2 w z  . . . e - ~ I [ V ( N - 2 )  

n n 0 

= Z ' o ( Z g )  N-2  (2.11) 
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with 

] Z ~  : e - ~ I t  V e - ~ % w ~  e - ~ S n 2 w 2  . . . 

Lnj=O .I Ln2=O 
(2.12) ] ,, _ e-t3,~,,i e-tJ,,~,,~.. .  Zo  - e -m~v  

Lni=O .3 Ln~=O 

Now Z~ and Z~ may be written as 

Z'o = e - m ,  v l-I (1 -- e-OWO -1 
i 

Z'~ = e - ~ q v  I7t (1 - e - ~ )  -a (2.13) 
i 

As already explained, Wk can be have two values (k 2 +1-12)1/2+/x. The two 
values of Wk can be attributed to the fact that (k2+f12)~/2+/z corresponds 
to a particle with charge +1 and (k2+f12)~/2-/ ,  corresponds to a particle 
with charge -1 .  Again, since each of  the Wk values is independent of  the 
other, we have 

Z'o = e -m '  v I71 (1 - e--13(Wk)O -1 I-I (1 - e--13(Wk)2) -1 
i i' 

Therefore, 

Defining 

In Z~ = - 8 1 1 V - ~  In(1 - e - / 3 ( w k ) l )  - ~  In(1 - e -t3(wD~) (2.14) 
i i' 

1 
I V  = I,(f~) + If  = - ~ v  in z~ (2.15) 

we have from equations (2.14) and (2.15) 

1 I d~k 
I f  = ~ j (27r). [ln(1 - e -~(wkh) + ln(1 - e-~(wk)2)] 

~L f d~k [ l n (1 -e - r162  (2.16) 
J (2~) ~ 

where E =(k2-+-~~2)1/2;  I f  is the sum of two zero-point energies of  the 
charged particles. 

Now Ii(f~) is given by 

Id ~ k l  
11(0) = (27r) ~ 2 [Wk,+ Wk2] 

f d~ k = ~ 7  (k2+112) 1/2 (2.17) 
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Now from (2.13), defining 

1 I~ vr = I~(w) + I~ t~ = - In Zo 
/3V 

we get 

1 I[t3=-fl f d~k ~ - ~  In[1 - e -l~(k2+w2)u2] 

i~ (w)=  I d~k 1 (2=)----v ~ w~, 

where w~, = (k2+ w2) 1/2. 
Starting from the definition of the thermal average 

Y~-o (=~176 ~o) 
one obtains easily 

with 

(~])T = I0 vT = Io(1"~) + I~o 

(2.18) 

(2.19) 

(2.20) 

(2.24) 

with 

Vo=[i1+�89 z ~(mB- w2)/~] 

1 2 2  4 AB[312+(NZ_ZN)I,o 2 +~ma~Po+AB~o+ 

+ 2 (N  - 2)Ioi'o + 6Io~po 2 + 2 (N  - 2 ) I ~ o  2] 

f d"k 1 
I0 (~)=  (2rr)~ (k2+~2),/2 

jr d~k 1 [ 1 1 ] (2"21) 

lo ~ = 2  (2r (k2+f~2)l/2 e~(~+.)_ 1 ~e~(~_~) 1 

Again I F  and Io vT are related in the following way: 

d i p _  aloV r (2.22) 
dO 

Similarly, for transverse components we have I~ vr=  l~(w)+1'o 8, the mass 
parameter being w. After obtaining contributions from each term of (Hio~)T 
and using (2.3), (2.4), and (2.6) and also keeping in mind that our system 
is invariant under 0 ( 2 ) x  O ( N - 2 )  symmetry (as already discussed), we 
get V~. For convenience we henceforth write I F  as 11 and Io vr as Io and 
similarly I'1 vr as 1'1 and I~ vr as I~. Finally, we have 

Vc = , ,  1 2 z (2.23) vo-  ~/* ~o 
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Now, minimization of  V~(~po, ~ ,  w,/~) with respect to l-I and w and use of  
the results d l N / d f l  = ( 2 N -  I)fIIN-1 and dI'N/dw = ( 2 N -  1)wI'N_l enables 
us to write the following coupled equation for fl and w: 

l-I 2 = mE + 4AB[3Io + ( N  - 2)I~+ 3~ 2] 
(2.25) 

w 2 = m2+4hB(Io + NI'o+ q~2o) 

It can be easily shown that the GEP contains the leading-order term of 1 / N  
expansions. Taking the limit N--> ~ with ABN and ~p2/N constant we get 
from equation (2.24) 

Vo I~+ ~ ( m  2 -  w 2) I~+ ~ m 2 [~p2~ + (NAB)(~_~./2 

[ (N / I  2 P" ~-N) (2.26) 
2[ ~p02\ 

In the above limit (N--> oc) the w equation becomes 

I~ = (w 2 -  m2) /4(ARN)  - (~o2/N) (2.27) 

Substituting (2.27) in (2.26), we get 

Vc I~+ w E 1 m2,2 1 2/'~o~ 
N - 16(NAa~ (wE-- B) --~/~ k-NJ (2.28) 

The above result is nothing but the 1 / N  expansion result and putting/.~ = 0, 
we get the case without/~ already obtained (Stevenson et al., 1987). Finally, 
the renormalized mass mR, defined as the particle mass for ~Po = 0, is given 
by 

m~=d2Vol : 2  dVo[ 
d 2 d~2o I~o=O ~ol~o=o 

= rn~+ 4AB(N+ 1)Io(mn) (2.29) 

3. CALCULATION OF MASS OF THE SYSTEM AND 
CHEMICAL POTENTIAL AND BEHAVIOR OF 
M AND /x WITH TEMPERATURE 

The mass of  the system is given by d 2 VQ/dtp g evaluated at the minimum 
of the potential. Using equation (2.25) and the fact that Io FT = Io([l) + lo ~ 
and I0'FT ---- I~(W) + I~ ~, we get 

d2 VG M 2 = ~-~2_/.t2 
dr - (say) (3.1) 
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The coupled equation (2.25) now may be written in terms of  the renormalized 
m a s s  m 2 

0 2 = m 2 + 4A B{3[Io(O) - Io(rnR) ] + ( N  - 2)[I~(w) - Io(mR)] -- 3~o 2} 

+ 4A813IO ~ + ( N -  2)I~ t3] 
(3.2) 

w e = m~ + 4aB{Io(O) -- Io(raR) + N[I'o(W) - Io(mR)] -- ~02} 

+ 4A,(Io ~ + NI'o t3) 

Again we use the following results (Stevenson, 1984, 1985, 1987) for 2+  1 
dimensions: 

1 2 z Lg(x) 
I,(~) - I,(mR) = --~ ( m R - a ) I o ( m R )  -- m3R 81r 

(3.3) 
mR 

I o ( ~ )  - I o ( m g )  = - -  4----~ Ll(x) 

with Ll(x) -- ( ' , / x -  1) and L2(x) = l ( x / x -  1)2(2x/x+ 1), where x = 02/mgg [a 
similar set of  equations for I~(w) - Ii(mR) and I~(w)- Io(mR) is obtained 
by replacing x by y, where y -- w2/m~]. We get 

~2= m zR--4AB[ 3mR L14(~X) + ( N-- 2)mR L14(~Y) -- 3q~2o] 

+ 4AB[3IO ~ + ( N  - 2)I~ t~] 
(3.4) 

w2= m2R--4AB[ rnRLl(x) NmR L'(Y---~)-~oz]4~r 

+ 4A.(Io ~ + UI'o ~) 

The integrals Io ~ and I~ ~ appearing in the coupled equations (3.4) depend 
on (/z, O) and (tt, w), respectively. Thus, 0 ,  w, and /x  are interdependent. 
From the definition of  charge density and using (2.23)-(2.25), we have 

dV~ 0 V o d ~  2 1 d 
dlz 002 dl~ 2 

So, 

dVo 

P - d# - - \ 0/-r / (T,~) fixed 

The mass of  the system can now be obtained by solving simultaneously the 
coupled equations (3.4) and (3.5) for fixed charge density and using equation 
(3.1) and the constraints imposed by the minimization of  Vc. The condition 
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of minimum V~ may be written with the help of equations (2.23) and (2.24) 
and we get 

dVc= 0 = ~o[m~+4AB{~p2o+3Io+(N-2)I'o}]-ix 2 (3.6) 
d~o 

Equation (3.6) suggests that for V~ to be minimum either ~Oo = 0 or 

rn~ + 4AB[ ~pg + 3 Io + (N - 2)I~] = 0 (3.7) 

The condition of minimum of V~ for ~o~ 0 may be written using 
(2.29) and (3.3) as follows: 

~o 2 = (/x 2 -  m~) +~-~ [3Ll(x) + ( N -  2)L,(y)] (3.8) 

Thus, to obtain M: [equation (3.1)] one has to solve equations (3.4) and 
(3.5) simultaneously after substituting the value of ~0~ from equation (3.8) 
in the above equations. On the other hand, if a minimum occurs at ~o = 0, 
M u can be obtained by solving (3.4) and (3.5) after putting ~Oo = 0 in both 
the equations. 

Substituting the value of aI~/atx from (A.13) of the Appendix, we get 
for ~Oo~0 

p = ~ [ ~ - ~  ln(f/2- ~2)/32 + 1 ( 3 l ~ 2 -  ~2)/3 ] + tZ~2o (3.9, 

1.0 

:~.6 
e -  

:Z 
Z . I ,  

M (T} .....- 

�9 Y t I i ~ t i 

tO, O) .2 .4 .6 .8 1.0 1.2 
T( In  Mev)  ... ~, 

Plots  o f  M(T) a n d / ~ ( T )  for N = 10, p = 0.01, and  M R = 1 MeV. Fig. 1. 
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Now the presence of  the log term in equation (3.9) prevents Bose 
condensation for massive particle with fl2---/z 2. However, whether any 
solution exists for 1) 2 > 0 can only be checked by numerical analysis. As it 
happens, we do not find any nontrivial solution for ~o # 0 and for q~o = 0. 
We find solutions for M and /z  for all temperatures without any break. 

In Figure 1, M and /~ are plotted against temperature. Since in 2+ 1 
dimensions I_~ is finite, normalization of A does not present any problem 
and since A is finite, for the sake of simplicity the M ( T )  and /z (T)  curves 
are drawn keeping A fixed (we have taken here A = 0.01). Also, mR and p 
have been fixed at 1 and 0.01, respectively. 

4. CALCULATION OF FINITE VG AND ITS BEHAVIOR WITH q% 
FOR DIFFERENT T E M P E R A T U R E S  

A straightforward though lengthy calculation leads to a finite- 
temperature GEP for 2+  1 dimensions. Starting from equation (2.23) and 
then using (2.24), (2.25), (2.29), and (3.3), we get 

m~ +1 m~ +l 
Vo = - - -  L2(x) - L,(x)[m2(1 - x ) ]  

8zr 8~" 

f m~,+l v+l L ' "  mR _ y ) ] }  - ( N - 2 ) / ~  2~Y ) - ' - -~-  L,(y)[ m~(1 

+m2R 2+ r3m  -y o 

m~ v-l) 
+ (N  2 - 2N) rn~-'-----~) L~(y) + 2(N L,(x)L,(y) 

167r 2 - 2 )  

6m~-'  m~ -1 ] 
4~ L1(x)~~ 4-'--~ LI(y)~p2 

2 
- tz  ~ +  I~ + ( N - 2 ) I ~  

2 

-Ar~[3(I~o)Z+(Xe-2N)(I'o~)2+2(N-2)I~oI'o~]+D (4.1) 

where u = 2 (p represents the space dimension) and D is usual divergent 
vacuum-energy term and is given by 

D = ( N -  1)I,(mk) -AB(N z - 1)Io(rnR) (4.2) 

As can be seen, the vacuum-energy term does not contain any temperature- 
dependent term. 
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The finite GEP is then obtained by substituting the values of L2(x), 
Ll(x),  Lz(y), and LI(y) from (3.3) in equation (4.1) and the result is 

-87r  ( v ~ -  1)2(2x/x + 1) + ("/-x- 1)(1 - x) 

+ ( N -  2)(~ (x / f -  1)2(2x/~+ 1) + (~/y- 1)(1 - y))  ] 

2 2 2 mR~o-- . 4+ - mR 
+ 2 -r ABq~o AB 1-~-2 

x [ 3(x/~- 1)2+ (N 2 - 2 N ) ( , f y -  1)2+ 2 ( N -  2)(x/~- 1)(x/y- 1) 

24"rrmR (x/-x-- 1)~o 2 8"rrmR (N-2) (v ' -y -  1)q~] 

[1, 2 
---~- ~o~ + I~ + ( N -  2)I~ t~ 

z 

-,~B[ 3( I~o )2 + ( N 2 -  2N)(  I'ot~)2 + 2( N -  2) I~o fo t~] (4.3) 

Note that (4.1) holds equally for 1 + 1 dimensions and substitution of values 
of Ll(x),  L2(x), LI(y), and L2(y) in this dimension would give the 1 + 
1-dimensional ~'o. In Figure 2 we plot Vo with r for different temperatures. 
The curves in this figure also confirm the conclusion drawn in Section 3 
regarding the phase transition, i.e., a phase transition does not occur for 
massive bosons. In the computation of ~7~ we solved the coupled equations 
(3.4) and (3.9) for a fixed k and used the results of I~,  I~ e, Io a, 1~) ~ from 
the Appendix. The inputs of our calculations are mR = 1, h =0.01, and 
p = 0.01, expressed in MeV and for N = 10. 

Following the definitions of the thermodynamic potential ~ and 
pressure P for q~o = 0, we have 

A 

O(T, V) 
V Vc and P = - I~G (4.4) 

Now using the definition of entropy S, we get 

d T  = o f l  2 a T  (4,5) 
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Fig. 2. 

.B 

- I .0  l 
I 

o) (b) 

/(c} (d) 

~/ / /  ~'.~ i 
%(Mev) 

Plot o f  ~'o vs. q~o for  N = 10, m R = 1 MeV, p = 0.01, h = 0.01, and  (a) T = 0, (b) T = 0.3, 
(c) T = 0.6, and  (d) T = 0.8 MeV. 

In the above equation, detailed calculation shows, using (2.25) and (2.24), 
that the coefficient dfl2/dT vanishes. So, for ~po=0 we get from (4.5) 
and (A.14) 

S = ~ 12((3) T 2 + 2(2tz z - 0 2) + ( 0  2 - iz 2) ln(l~ 2 - / z 2 ) / T  2 

+ T (4.6) 

5. D I S C U S S I O N  AND C O N C L U S I O N S  

In this paper  we have considered a single /z. Our numerical results 
show that for finite p, a phase transition does not occur for nontrivial values 
of  M and Iz, as also observed by others (Haber  and Weldon, 1981, 1982, 
and references therein) and there are two variational parameters  fl, w. 

However,  for Iz=  T = 0 ,  our results are in agreement with that of  
Stevenson et al. (1987). 

The extension to the many-~z case is straightforward. I f  we introduce 
all possible charges, one to the radial field and the remaining ( N / 2 - 1 )  to 
the transverse fields, the Lagrangian and the corresponding Hamil tonian is 



1402 Majumdar and Roychoudhury 

modified as follows: 

.~  = ~O.rq~jO ~,~os 1 2 -~m~q~j~oj - ),B( ~ojq~) 2 

+1 2/ 2 -- - i tzk(~2k-l~2k--  ~2k~2k-1) ~ k ~ 2 k - l " l -  ~ k )  (5.1) 

H =-12 Z ~)"[- X I (V~ j )  2"{- 1 X m 2 ~  2 +  XB X (~02) 24- i Z ]'~k({P2k-lq}2k 
j j j j k 

_ ~2k~02k_l) _ 1  2 2 ~_, tXk( ~2k-1 + ~p2k) (5.2) 
k 

In the above equation, the sum over j is from 1 to N, and that for k is from 
1 to N / 2 .  T h e  expression for Vc is 

v ~ = [ t ,  + � 8 9 1 8 9  '+~(m~ - w 2 ,)io] 

1 2 2 4 +~ma~oo+ AB~O 

2 ~ 2 , 2 + ( N _ 2 ) i o l o + 6 i o ~ O o + ( N _ 2 ) i o ~ O o ]  + h a [ 3 I o + ~ ( N - 4 ) I o  , 2 t 2 

_�89 2 /-*kgo (5.3) 

and the corresponding equation for ~2, w 2 is obtained from equation (2.25) 
by dividing the I~ terms by 2, and the integrals 1~ and I~ are obtained just 
by replacing f~ by w in the 11 and Io integrals. Further, the theory can be 
extended to gauge bosons and fermions. 

APPENDIX. EVALUATION OF I~ a, I~ a, Io ~, and I~ ~ 

I f (n , /~ ,  T) 

1 
- 2 ~ . ~ { I o k d k [ l n ( 1 - e - t 3 { z - ~ ' ) ) + l n ( 1 - e - t ] ( E + ~ ' ) ) }  

I/ = 1 E d E [ l n ( l _ e _ ~ ( e _ . ) ) + l n ( l _ e _ ~ ( E + . ) ) ]  
2~r~ 

1 ~ [ I ~  e-"r j" ~176 e-"(E-~')~ 
-- E d E  + 

2"rrA8 n n n=l D. 

1 
- [1, + / 2 ]  

2,n-fl 

with 

i ~  D e-n(E-~)~ 
I 1 = E d E  

n=l 1'] 

o~ f~e-.(E+~)~ E d E  
I2 = n~=l ,j f~ -it 

(A.1) 

(A.2) 

(A.3) 
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Now integrating (A.3), we get 
oo e-n#(f l-e.)  ~ e-n~(n-~,) 

11 =~)" X "kX .=, n ~  .=, n~# ~ 

Similarly, 
oo e-ng(~+~) o~ e-n~(n+~z) 

n = ~  n2fl n = ~  n313 2 

Therefore, 

where 

with 

and 

1 [ f~ ~ [ e - "C") t3  e-"m___+"'t3'~ 
I ,~ (a ,  ~ ,  T) =-~--~ ,.~-~ ~__, \ n2 t- n2 ] 

1 ~ (e -"m-')' . - ~  
+/3 ~ .= , \ -  # ~ .~ /J 

( e -"(a-~) '  e-.(a_§ 
J,=.=~Z \ n 2 § n 2 ] 

aJ--!= [ +(~+/~)  n + ] Off - E  (l~-/.L) e-"(n-m~n e-"( ~)~ 

O J---! = (~ - it) ln(1 - e -~(a-~)) + (gl+ tx) ln(1 - e -t~(a+g)) 
o/3 

= (l~-/~)ln[J3(~q-p,)~3 2(~'~ --/"~)2 ~- fl2(~r~ -- ~t'L)3 " " " ] 2 6 

[ + ( ~ + / z )  In f l (~+/~)  2 

M--! = (~q - p,) l n ( ~  - # ) f l  + (f~ - #) ln(1 + X )  a/3 

+ (D~+ #) ln(fl+/z),8 + (0,+ #) l n ( l+  X') 

/3(n-  ~) t3~(n- ~): 
X =  

2 6 

x ' = -  t3(~ + t~) ~ B~(~ + t r  
2 6 

(A.4a) 

(A.4b) 

(A.5) 

(A.6) 
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Now expanding ln(1 + X) and In(1 + X') for small IXI and Ix'l and integrat- 
ing (A.6), we have, noticing that J1(/3 = 0)= 2~(2), 

to (n-/*)~/3 2 
J~ = [/3((1-/*) ln(f/-/*)/3 - (l'~-/*)/3 - 4 

(f/+ /*)3/33 
�9 .] + [/3(~q +/*) In(f/+/*)/3 

+ 72 -"  

(n+/*):/3: (~-~ +/*)3/33 �9 .] + 2 ~ ( 2 )  (A.7) 
4 72 d 

where if(P) is the Riemann zeta function defined by 

~(p) = ~ 1 
P 

n=l /'/ 

Now, 
( e -"t3(a-') e-,t3(a+,~).,~ 

J2= n=l ~ ~ n3 4- n3 ] 

+ 

3132 (~'~ +/*) fl 3 4_ (~"~ +/*)2/3 4 

4 12 288 

-2f//3~(2) + 2~(3) 

Now using (A.7) and (A.8), we get from (A.5) 

or  

0.I2 r oo e--ng(g~--~) e-ng(Sa+~) 1 .2 4-(f/+/*)z ,2 j 

Again proceeding in the above manner, we get 

& = _ ( f / _ / * ) 2  l n ( a  - ~)/3 4 12 

(n-~)2/3 4 ] +(f/+/*)2[~ 
�9 �9 In(f/+/*)/3 

288 

]} 

-2--~( 2fl In f12(f/2_/*2) 2/3 

n 3 [ ~  3 2 1 
3 4- (f/ +3/* ) -2-~( f /+ /*)4  

-1-(~-~--~)4]/3 2~(3)+0(/3)2+'"  "} + - y -  

(A.8) 

(A.9) 
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From the above  results, one  can find easily Iil3(w, T) (put/.~ = 0 and divide 
the result by 2), 

1 [ w  2 w 2 w 3 w 4 + ~ ( 3 ) +  ] 
I~ (w)=-2- -  ~ ~-~ln/3w 4/3 6 F-~-~/3 /33 0(/32) + . . .  (A.10) 

Finally,  using (A.6) and (A.7), we get I~o, I~ t3, 01~l/Olz, and OIl~aT, and 
the results are ( T =  1//3) 

1 0 I ~  1 [ f l l n / 3 2 ( f ~ 2 _ / z z ) _ l ) + l ( f 1 2 + / . t 2 ) f l  . . . .  ] 
Io~(l~,/x, T) - O OO = - 2 - 7  

Similarly, 

1 {ln flw w w 2 ) ~--/3+. . .  I~r3(T, w) = -~---~ \ -~ 2 24 

(A.11) 

(A.12) 

0/z 2~r /~ fl ( I~2- /z2)+  (3f~2-/z2)fl  - . .  (A.13) 

1 
= - 7 z- [ 12~(3) r 2 + 2(2/ .  2 - 0 2) + ( 0  2 - / z  2) 

OT z4 7.r 

x In(f~ 2 -  2 ) / T 2 +  O ( 1 / r  2) (A.14) 
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